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For the free creeping viscous incompressible plane flow of a finite region, bounded by 
a simple smooth closed curve and driven solely by surface tension, analyzed 
previously, the shape evolution was described in terms of a time-dependent mapping 
function z = Q(& t )  of the unit circle, conformal on 19 < 1. An equation giving the 
time evolution of the map, typically in parametric form, was derived. In this article, 
the flow of the infinite region exterior to a hypotrochoid is given. This includes the 
elliptic hole, which shrinks a t  a constant rate with a constant aspect ratio. The 
theory is extended to  a class of semi-infinite regions, mapped from Im c < 0, and used 
to solve the flow in a half-space bounded by a certain groove. The depth of the groove 
ultimately decays inversely with time. 

1. Introduction 
A theory was developed previously (Hopper 1990, hereinafter referred to as Part 

1) for a special type of moving free boundary problem in fluid dynamics: briefly, 
creeping viscous incompressible plane flow in a finite region, bounded by a simple 
smooth closed curve and driven slowly by surface tension. Such problems are self- 
contained in that the applied tractions are intrinsic in the geometry. The objective 
is to determine exactly the time evolution of the shape. The problems are nonlinear 
owing to the large changes in shape. The region in the complex z-plane is described 
in terms of a time-dependent conformal mapping function Q(c, t )  on the fixed regiop 
161 < 1 of the complex 5-plane. An equation giving the time evolution of Q(c,t )  was 
derived. In  practice, it has been necessary to conjecture a parametric form, Q[[; al(t), 
a2(t), . . . 3. The correctness of a candidate map is verified, and the time dependence of 
the parameters determined, using the theory. When the conjectured form holds and 
the equations can be solved, the evolution of the shape with time is obtained in 
simple, exact and essentially closed form. Several examples were given. References ' 
to prior related work am cited in Part 1. In  the present article, the theory is extended 
and further examples are given. 

Let us review the main points developed in Part 1. The region is regarded as the 
cross-section of an infinitely long isothermal general cylinder of Newtonian viscous 
liquid having dynamic viscosity 7, density p and surface tension y, in a gravitational 
field g, all these being constants. Let R, be a characteristic distance of the problem. 
A normalization scheme appropriate to creeping flow driven by surface tension is 
used. Denoting the position x, and the time to, the corresponding dimensionless 
variables are x = x,/R, and t = yto/7B,. In the limit where the Suratman number 
(pyR,/q2) and the Bond number (pgR:/y) approach zero, inertial and gravitational 
effects become negligible in comparison with capillarity and viscous ones, and the 
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NavierStokes momentum equation in dimensionless form reduces to that of Stokes. 
It may not be always possible to assure that inertial effects remain insignificant for 
certain infinite regions. The boundary condition is that the surface traction is in the 
outward normal direction and equals the negative of the curvature. The applicability 
of the analysis to real liquids is subject to other limitations discussed in Part 1. 
Ignoring these concerns, we take Stokes equations for plane flow together with this 
classical boundary condition in dimensionless forms as the starting point. The theory 
employs the Kolostoff-Muskhelishvili equations of elasticity theory (Muskhelishvili 
1953 ; Sokolnikov 1956), where the stresses and displacements (here, the velocity) are 
expressed in terms of two analytic functions q5 and $. 

< 1 onto the (dimensionless) region of interest. 
Rigid-body translations and rotations may appear, depending on how 52 is chosen. 
These are not physically significant and are ignored. Primes denote complex 
derivatives with respect to the independent (complex) variable ; an overdot, the 
derivative with respect to time; and an asterisk, the complex conjugate. Let a = eie. 
Thus, 6 denotes general points in the c-plane, while a always indicates points on the 
unit circle of the [-plane. The surface tractions are intrinsic in the map 52(c, t ) .  The 
requirement that the surface velocity be such that a fluid element a t  z = R(a, t )  move 
to z + d z  = R(a+da ,  t+dt) in the time increment dt is sufficient to determine $(c,t) 
in terms of R([, t )  : 

(1) 

Let z = 52(<, t )  conformally map 

q5K) = - W ( e )  F(5)  + d(0, 

where 

Substituting into the surface- traction boundary condition, it is found that the values 
of $(c,t) on the boundary are given explicitly by 

The boundary values are defined to be the limit as the boundary point is approached 
from within la -= 1. The validity of the chosen mapping, and the time dependence 
itself, are determined by the requirement that $(a,t) be the boundary value of a 
function analytic throughout Ig < 1 for t > 0;  that is, that the function on the unit 
circle can be continued analytically onto the unit disk. Some conjectures regarding 
important forms of R were argued in Part 1 ; they serve as guides for constructing 
appropriate maps. It is implicit in (3) that the area of the liquid is unchanging. 

2. Hypotrochoidal holes (including elliptic) 
These equations carry over to maps of the infinite region exterior to a smooth 

simple curve. The unit disc is mapped by z = o,([) = $'[1+ [ , /N l)] onto the region 
exterior to an N-cusped regular hypocycloid having one of its cusps on the positive 
real axis. Smaller discs 151 < const < 1 are mapped onto the exteriors of hypo- 
trochoids. Hypotrochoidal holes may then treated in the same manner as were 
epitrochoidal bodies (Part 1). The N = 2 case gives the elliptic hole. We impose the 
condition that the stress components vanish as 1x1 + 00. (If the region is regarded as 
the infinite limit of a large body, then there can be no externally applied pressure.) 

(4) 

From the reasoning of Part 1, it may be conjectured that 

Q,(C,t )  = S"a,(t)+b,(t)cN], 0 < la < 1, N 2  2 ;  
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a, and b, are real and positive, and the subscripts N will be omitted when no 
confusion results. The positive direction along the boundary in z-space is clockwise 
around the hole. The elliptic hole (N = 2) is in some respects exceptional, but most 
of the analysis applies generally to N 2  2. The analysis is done on the normalized 
problem. The area of the hole will change with time; the constancy of the material 
area (continuity) is assured by the equations of the theory (see Part 1) and will not 
be analysed separately. 

Equations (1)-(3) again hold provided the positive sense of a contour always has 
the region on the left. From (4). 

152'(a)l = [a2 - 2 4 N -  1) COSNS. + (N- 1)'b2]f. (5) 

This is the same form that occurs in $4.1 of Part 1, where it was shown that 

Fcn)(0) = 0 for i < n < N ,  

P(0)  = ( l / x a ) K [ ( N -  1) b/a],  

where K ( k )  is the complete elliptic integral of the first kind. Because the stress has 
been required to vanish as lz l+oo,#(c) and $(c) must be analytic throughout 
14 < 1 (see Sokolnikov 1956, equation 76.11). From (2), 

which requires a + UF(0) = 0. 

Equation (3) becomes 

1 d - (N- 1) 6aN 
a-  (N-  1) bI+ a-  (N- 1) bgN 

a - (N-  1) b#]* P(a)- ("+Y)* ~ 

( 9 4  +[ fl 

= ~ - c N - " { ( ~ d " + b ) [  ...I+ [ d " - ( N -  1) bI.F(a)-(dd'"d)}. (9b) 

The analytic continuation giving $([) is obtained by replacing a with c. Expanding 
P(c)  in (9b)  as needed, analyticity of $([) on 14 < 1 requires 

b [ - P ( O ) - ~ / u ] - ( N - l ) b P ( O ) - 6  = 0, (10) 

which with (8) gives the second condition, 

6+ (N-  1) bP(0) = 0. (11) 

b N ( t )  = CNaN(t)N-', N 2 2 (12) 

b,(t) = Ga2(0. (13) 

Combining (4) and (ll), and integrating: 

Equation (12) is general. The special feature of the elliptic hole is that 

This means that any elliptic hole shrinks without change of the axial ratio. Letting 
m be the ratio of the minor axis to the major, C,  = (1 -m)/(l +m).  Combining with 
(6b) and (8), and integrating: 

a2(t) = a2(O)-K[(1-m)/(l  +m]t/x.  (14) 
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For N > 2, the shapes change and i t  is natural to take the time zero as the singular 
(i.e. cusped) limit. This is useless for N = 2 :  there is no natural time zero. For the 
ellipse, then, the choice of the characteristic distance Ro should be chosen as a 
characteristic distance at the initial time, which may arbitrarily be taken as zero. 
(The solution will then be valid for negative as well as positive times.) 

The behaviour in dimensional form may be summarized simply : the (dimensional) 
semi-minor axis is given by 

(15) Ls-min(to) = k - m i n ( O ) -  Pm/x( l  +m)IK [ ( l - m ) / ( l = m ) l ( ~ t o / ~ ) .  

Equation (15) together with the fact that m is constant describes the flow of the 
infinite region with an elliptic hole. Of course, the semi-major axis (Ls.maj = 
Ls-min/m) shrinks at a constant rate l / m  of that of the semi-minor. As the axial ratio 
m + 0, d.L,-&(t)/dt + 0 and dl,.,,(t)/dt-t - co. This limiting behaviour is approxi- 
mated by 

Ls-min(t) x Ls-min(O) - (m/n[ln (4/m)I(yto/r) m + 0. (16) 

The elementary result for the shrinking of a circular hole of (dimensional) radius ro 
is recovered from (15) when m = 1 : 

= ro(0) - (Y t O / W .  (17) 

Return now to (12) and consider the N > 2 holes. The area of the hole will certainly 
change. It is convenient to normalize the problem such that Idzi is the hole area of 
the singular limit. Taking this as the time zero and noting when zeros of U ( n )  first 
occur, b,(O) = a,(O)/(N- 1). Equation (24b) of Part 1 gives the hole area, from which 
one obtains 

u,(O) = [(N-l)/(N-2)];, b N ( 0 )  = [ (N- l ) / (N-2)4  ( N >  2). ( 1 8 ~ ,  b)  

Using these in (12) gives C,, whence 

b,(t) = (N-2)-1[(N-2)/(N- 1)]N~2uaN(t)N-1 (N > 2). (19) 

Using (6b) ,  (8) and (19), and integrating: 

a N ( 0 )  

t = R 1 K{[(N- 2)/(N- i)](N-2)/2uz-z}-1 da, (N > 2) (20) 

All this can be recast in a more convenient form by changing variables in (20) with 
k = [N-2)/(N- 1)](N-2)/2u~-2, and defining v = [~,(t)/a,(O)]~-~. Then (4) and (20) 
become 

Equations (21) and (22) describe the closing of any N > 2 hypotrochoidal hole, where 
the characteristic length Ro of the normalization is such that the area of the hole at 
t = 0 is Idzi. The astroid family (N = 4) is shown in figure 1. 

Because the integrand of (22) as k+O is - ( 2 ) / ~ k - l + l l ( ~ - ~ ) ,  it is obvious that the 
hole closes in a finite time. As v + 0 the hole becomes (for N > 2) a tiny circle of radius 
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X 
FIGURE 1. Hypotrochoidal holes for N = 4, showing one quadrant for times. = 0,0.300, LOO0 and 
1.500 corresponding to v = 1, 0.691, 0.276 and 0.102, respectively. The full figure is symmetric 
&crow the axes. The singular case (t = 0) is the N = 4 hypocycloid (the 'astroid'. 

[ (N-  1)/(N-2)]b11cN-a) that closes at a speed of -t, in accord with (17). As N +  a, 
the singular limit becomes a circular hole of unit radius with tiny cycloidal ripples. 
The ripples damp quickly leaving a circular hole shrinking, again, at a speed of -:. 
This case can be renormalized to obtain the levelling of half-space bounded by a 
trochoid and yields the same result as obtained from epitrochoidal bodies (Part 1). 

3. Theory for half-space regions 
Half-space regions have previously been treated as limits of finite regions (Part 1). 

In general, however, it is useful to have available a formalism specifically tailored for 
half-space problems. In  this section, such a formalism is developed for a class of 
simply connected half-space regions. It seems natural to employ a mapping from the 
upper half-plane, z = a([, t ) ,  Im 6 2 0. The region is oriented such that the fluid 
extends to infinity in the upper half of the z-plane and is restricted to be level at 
infinity (i.e. Im Q(E+ i0, t )  -to as 151 -+ 00). Maps not meeting this requirement involve 
branch points, leading to fundamental difficulties (Part 1). 

The derivation is very similar to that of Part 1 for finite regions. Let [ = E = i7. The 
description of the flow is that the surface velocity u(5, t )  be such that a fluid element 
at z = Q(g, t )  move to z = dz = Q(E+dE, t +dt) in the time increment dt. Let di$ = &, 
t )dt ,  where 2(E,t) is real. Then 

(23) 4 5 ,  t )  = 52'(E, t )  =(5, t )  +& t ) .  

The Kolosoff-Muskhelishvili velocity and traction equations are 
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In (25), a(E,t) is the angle between the outward normal and the Re z-axis, and an 
arbitrary constant has been set to zero. Combining: 

The terms in square brackets are the real and imaginary parts of the boundary values 
of a function analytic on Im [ 2 0, and this function is 

with boundary values given by the Plemelj formula 

where the principal value of the integral is implied. The validity of (28) requires that 
the following Holder condition for the 'neighbourhood of the point at infinity' (see 
Muskhelishvili 1953, $71) be satisfied: for sufficiently large El, with 6, < t2, 

This implies that la1(5,t)l+IQl(oo,t(l+0(151-"), ,u > 0, as IEl+oo. 
Assuming that all this applies, the analytic continuation of (26) onto Im[ 2 0 gives 

an explicit expression for $([, t )  on Im 6 2 0. Upon differentiating, inserting into the 
traction equation, and noting that G([, t )*  = I#([, t)I-l -G(& t ) ,  one obtains 

More compactly, 

d d 
in'(& t )  @ ( E ,  t )  = g[Q'(E, t )  Q(E, t)*Q(E, t)l-iz[Q'(E, t )  Q(E,  t)*I. (30b) 

As with (3), the validity of the chosen mapping and its time-dependence are 
determined by the requirement that @ ( [ , t )  be the boundary value of a function 
analytic on Im[ 2 0 for t > 0; that is, that the function on the real line can be 
continued analytically onto the upper half-plane. Conservation. of the fluid area 
requires that 62'(c, t )  + const (independent of t )  as 151 + 00. The presence of branch 
points in Q([, t )  creates the same sort of problems as discussed in Part 1. 

4. Isolated groove on half-space 
The flattening of half-space bounded initially by a certain isolated groove may be 

solved using the theory of $3. The candidate map was deduced by using a linear 
fractional transformation to expand the lobe of the N = 1 epitroichoidal body (Part 
1) to fill a half-plane in z-space. A remnant groove remains. The disk 10 < 1 was 
mapped into a half-plane of [-space. The condition al( 00, t )  = const = 1 then leads 
to 
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The fluid lies in the upper half-plane. The critical points of the map are a pole of Q(5, 
t )  at [ = -ip, and zeros of Q'(5, t )  at 6 = -i(p&h), so conformality requires p( t )  > 
h( t )  > O  for t > 0. The hypotheses of $ 3  are met. The singular initial condition, for 
which the groove is sharp and of unit depth, is given by h(0) = p(0) = 1 .  This curve 
is known as a pedal of a parabola. The flow is determined by adjusting the 
parameters h( t )  and p(t) so that $([, t ) ,  given by the analytic continuation of (30a) ,  
is analytic throughout Imf; 2 0 for t > 0. 

Substituting (31) into (30a)  and noting that SZ([,t)* = 5-A2/(5-ip), etc. i t  is 
obvious that the resulting expression for +([, t) continues analytically onto Im y 2 0 
except at the point [ = ip. Letting 5 = ip+s and using Taylor expansions, 

i$(i,u+e) = -- 

A2 

€2 
+ - [ G( ip) + sG' (ip) -,k] + O( so). (32) 

Avoiding the poles of first and second order at  f; = ip then requires 

Divide the latter by the former, let v = h / p ,  integrate using partial fractions, and use 
h(0) = p(0) = 1. Then 

The map (31) may now be rewritten: 

p = 3 i v - 1 ( 4 4 ) - i .  (34)  

QK, 0 = C-P2v2/(C+ip). (35) 

The time-dependence is obtained from (33a) .  Using Q'([;h,p) in (27) ,  at c =  ip, 
and using equations 3.152-1 and 8.12&3 of Gradshteyn & Rhyzhik (1980), one easily 
obtains 

G(ip; A, p )  = ([t2 + (p + h)2][52+ (p-h)2])-fd5 

= E L K ( - )  2(Ap)i = 1 1 --K(-) 2 d  = ;K(v).  1 (36)  nh+p  A+p x l + v  1 + v  
From (33)  and (35) ,  

(37) 
1 vy4-u")' = - - = = -- - ' (  dt dt lu p 4-2v2 2 d 3 h  ( 2 - v 2 )  

+v)G(ip) = -- 

Noting that v(0) = 1 and integrating: 

t (~)22/3n:  1 (2 - k2)[k2(4-  k2)0K(k)]-l dk. 

Expanding the integrand as k +. 0 provides the long-time behaviour : 

t (v )  - ~ ( V ~ ) + ~ ( ~ ) ~ [ ( V - ' - V ~ ' ) - ~ ( V - V , ) ]  (0 < v < yo, vo+0)  (39a)  

t (v )  x 4.899(v-'+v)-65.9 (kO.1 for v < vo = 0.05). (39 a) 
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FIGURE 2. Flattening of an isolated groove, showing the right half of the shape for times t = 0, 
0.100, 0.500 and 2.000 corresponding to v = 1 ,  0.894, 0.691 and 0.412, respectively. The singular 
case ( t  = 0) is the pedal of a parabola. 

Equations (35), (35) and (38) constitute the solution. Inverting the figure for 
aesthetical reasons, the boundary is given parametrically by 

The shape evolution is depicted in figure 2. The depth of the groove is - Y(0, t )  = pv2, 
and the curvature a t  its bottom is ~ ( 0 ,  t )  = 2v2k( 1 - Y~)~]-'. 

From (34) and (39a), the depth decays as ,uv2 - 3(2)k1 as t +  00, which is much 
slower than the exponential decay of the trochoid obtained in Part 1. The difference 
is because a disturbance that initially is localized spreads out with time, whereas a 
periodic one cannot; so the curvatures driving the flow decay more rapidly for the 
former. The t-' decay accords with a fairly general conclusion of Kuiken (1990), $4. 
The motion of the critical points of the map with time is of interest. The pole at 
[=  - i,u+-ico ast+co. ThezerosofW([) at[= -i(,ufh)movewithit,ultimately 
being at a fixed distance from it : A( 00) = 3$/2. 

5. Further developments and discussion 

the interior of an ellipse circularizes through a sequence of ellipses. Let 
A well-known device (Sokolnikov 1956, $80) permits testing the hypothesis that 

Q(C) = (a+bS)/C, 1 < 14 G (a/b)i ,  0 < @/a)$ < 1. (41) 

This maps 14 = 1 onto an ellipse having semi-axes ( a + b )  and (a-b): and 14 = (a/b)f 
onto the line segment [IRezl < 2(ab)i, Imz = 01 (the 'cut'). The conditions on 151 = 
1 lead again to (1)-(3), but now $(m)  need be continued analytically only onto the 
annulus 1 < 14 < (a/b)i. The conventional directional senses of the contours are used: 
F ( y )  is defined by (1) but with the integration in the clockwise sense (since this gives 
a counter-clockwise direction in the z-plane), and the domain is 151 2 1, throughout 
which F(g)  is analytic. Further conditions arise, however, including the necessity 
that 4 be continuous in the z-space region, including on the cut: otherwise, 
unacce table discontinuities of the velocity and stress fields occur. This implies that 
$ [ ( a / b ) % ~ ]  = 4[(a/b)&*]. By symmetry, $([*) = #([)*, so this condition requires 

P 
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Im@[(a/b)b] = 0. A constant area implies aci = bb. Together, these are found to 
imply 

ReP[(a/b)b] = ; [ ( ~ / b ) ~ -  l](u/a). (42) 

P(c) is evaluated by integrating around a closed contour consisting of the unit circle 
and lines along the branch cuts [IRed < @/a)#, I m c  = 01. It is found that 

This is manifestly not independent of a( = e"), conflicting with (42). Therefore, the 
original hypothesis was false, and a body bounded initially by an ellipse does not 
become circular through a sequence of ellipses. 

The formal theory is readily extended to doubly-connected finite regions mapped 
from the annulus 0 < p(t)  < 1(51 < 1, using the same conceptual scheme. Separate 
expressions, similar to (1)-(3), are found to apply on the two boundaries. The 
requirement is then that the boundary values $(a) and $(pa)  can be continued onto 
the c-annulus such that not only are there no singularities but also the ~ a m e  analytic 
function ll.(c) results. There is also separate a condition arising from #(c). The 
formalism readily yields the known solution to the elementary problem of the closure 
of a concentric circular annulus. To date, however, the author has been unable to 
guess a map that corresponds to a non-trivial flow. Publication of the theory 
therefore seems unwarranted at this time, though it is available in report form 
(Hopper 1991). A physically interesting case was the conjecture that a ring bounded 
by confocal ellipses collapses through a sequence of shapes bounded by other pairs 
of confocal ellipses. It proved impossible to satisfy the +condition, so the conjecture 
is false (Hopper 1991). 

The flow exterior to a parabola has also been analyzed, by a direct method. It is 
found that, in the absence of externally imposed stresses, the parabolic boundary 
simply translates without change of shape. The analysis, together with a treatment 
of the effects of certain fields imposed at infinity, will be published elsewhere. 

The theory developed in these articles has yielded the evolution of shapes whose 
singular ( t  = 0) limit involves cusps directed into the liquid. No time-dependent map 
has been discovered giving the flow of a shape whose singular limit has a corner or 
outward-pointing cusp. Such maps must exist, but the simple ones that first come to 
mind (Part 1) prove incorrect - for fairly general mathematical reasons. Intuitively, 
these conjectured maps may also seem physically implausible. Consider, for example, 
a long slender oval of some sort. One might expect that the first stages of its 
becoming circular under the influence of surface tension would involve the formation 
of bulbous ends, giving a sort of dumbbell shape. Presumably, a thin enough 
rectangle would pass through a similar shape. Related behaviour might be expected 
at an outward-pointing cusp or corner, and by extension, a rounded cavity may form 
at an inward-pointing corner. Apparently, conditions a t  an inward-pointing cusp 
delicately avoid the latter. These speculations make it tempting to construct maps 
having bulbous ends from known ovals, such as the ovals of Part 1 or the elliptic 
body. For example, starting with (41), let w = x / (ce - -z2 ) ,  c > (a+b) .  This leaves the 
w-image of 14 = (a/b)f intact as a cut, neither opening a hole nor having overlaps, and 
provides plausible enough shapes. Given, however, the mathematical difficulty of 
avoiding a discontinuous $(c) along the continuum of points on the cut with just a 
few adjustable parameters, such exercises seem a priori likely to fail. Life is short, 
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and one would want a reason to think a particular conjecture was especially 
hopeful.? More generally, attempts to guess an interesting map should be guided by 
physical intuition, by the constraints on the functional form of the mapping that 
seem inherent in this type of flow, and by the difficulties likely to be encountered in 
determining the parameters of the map. (See Part 1 .) One must not’ expect too much : 
that shapes whose singular limit possesses corners or outward-pointing cusps 
apparently evolve according to maps that are hard to guess or uselessly cumbersome 
should be less surprising than there being interesting shapes that evolve with 
remarkable simplicity. 

The type of flow considered is quite restricted. The problem, once reduced to 
dimensionless form is specified entirely by geometry : there are no variable physical 
parameters. It is doubtful that the formalism would be useful if there were. In  
particular, cases involving the following complications seem unlikely to yield to these 
methods : inertial effects, gravity, a superposed extensional flow (e.g. two cylinders 
coalescing by surface tension while simultaneously being elongated), or two viscosities 
(e.g. an infinite region of one liquid with a hole, as in $2, containing a second liquid). 
Also, given the simplicity of plane flow, one cannot be optimistic that axisymmetric 
three-dimensional flows would also admit a shape evolution describable by simple 
conformal maps. Perhaps the most immediately fruitful extension of the theory 
would be the development of an effective constructional method based on (3). What 
was said in Part 1 may be reiterated : the success of the description, though limited, 
is suggestive of deep connections between geometry and the dynamics of this class 
of problems, and insights into those connections may lead to methods more generally 
applicable to capillarity-driven flows. 

Work performed under the auspices of the US Department of Energy by the 
Lawrence Livermore National Laboratory under contract W-7405-ENG-48. 
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